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Abstract

In the present paper new equations of motion are derived for the vibration of piezo-ceramic thin-walled
cylindrical shells, generalizing Fl .ugge’s shell theory for this type of material. These new equations differ
from the ones known from the literature in that here the electric field is not assumed as constant over the
thickness but is obtained by solving an additional differential equation in the thickness direction. The shells
are polarized in the radial direction and the electrodes are in the form of identical sectors. Such shells are
used e.g. as stators in some piezoelectric ultrasonic travelling wave motors and it is therefore important to
study their free and forced vibrations.

The momentum and moment of momentum balance used in Fl .ugge’s shell theory are of course
unchanged. The constitutive relations used in the theory of elastic shells are replaced by those of a linear
piezoelectric material, so that additional field variables are introduced. These are subject to Maxwell’s laws,
which in particular have to be fulfilled by the electric field inside the shell. For a thin radially polarized shell,
only dielectric displacements in the radial direction are taken into account. Due to the absence of free
electric charges in dielectric media such as PZT, the divergence of the dielectric displacement vanishes. This
condition leads to an ordinary differential equation of the Euler type in the radial electric field, which can
be solved in closed form. Together with the thin shell assumptions and with the piezoceramic constitutive
equations, this results in the equations of motion for thin piezoceramic shells with non-constant electric
field over the thickness.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

This study of piezoelectric shells was motivated by their use in piezoelectric travelling wave
motors, as described in Refs. [1,2]. In these motors, the stator is driven by an externally applied
electric voltage, applied to its electrodes, generating a travelling bending wave via the inverse

ARTICLE IN PRESS

*Corresponding author. Tel.: +49-6151-16-2185; fax: +49-6151-16-4125.

E-mail address: hagedorn@mechanik.tu-darmstadt.de (P. Hagedorn).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00650-3



piezoelectric effect. In the present paper, Fl .ugge’s theory for elastic shells is generalized to
cylindrical piezoelectric shells, as used in the travelling wave motors described in Refs. [1,2].

The shells are polarized in the radial direction and the electrodes are in the form of identical
sectors. Such shells are used e.g. as stators in some piezoelectric ultrasonic travelling wave motors
and it is therefore important to study their free and forced vibrations.

There are of course many technical publications on the modelling of piezoelectric structures, in
particular beams, plates and shells, e.g. Refs. [3–7]. Beams, plates and shells are often assumed as
elastic and thin piezoelectric elements are then bonded to the elastic structures. All these
publications assume an electric field E ¼ V=t constant over the thickness. Therefore, the influence
of the strain on the electric displacement must be neglected to fulfill Maxwell’s law div D ¼ 0: The
resulting error is negligible if the thickness of the piezoelectric element is small compared to
the thickness of the complete structure. If this is not the case, a more refined model is needed and
the earlier results cannot always be transferred to monolythic structures of piezoceramic material.

Publications [4,5,7] deal with beams while Refs. [5–7] deal with plates. In shells, the assumption
of a constant electric field cannot fulfill Maxwell’s law, even if the influence of the strain on the
electric displacement is negligible. There was thus a need to derive a model covering monolythic
shell structures with non-constant electric field over the thickness. This is an alternative to using of
3-D FEM calculations for shells and gives a useful engineering tool for a number of problems
involving piezoelectric actuators. It also offers a basis for the formulation of a new type of finite
element with a non-constant electric field. Such elements might be used for 2-D FEM calculations
of piezoelectric, monolythic structures and piezoelectric shells.

Section 2 describes Fl .ugge’s model for isotropic material which forms the basis of the
mathematical model of the piezoceramic shell. It is followed by an extension incorporating the
special features of piezoelectric materials.

The boundary value problem is solved for harmonic electrical excitation in Section 3. Section 4
deals with the calculation of the electrical admittance of the piezoceramic shell. Some numerical
results, namely axial displacements at the first eigenfrequency and electrical admittances are
presented in Section 5 and compared to experimental values. A brief summary and an outlook are
provided at the end of the paper.

2. Fl.ugge’s shell equations and their generalization to piezoelectric material

In 1934, Fl .ugge presented a model for the dynamics of circular cylindrical shells with finite
bending stiffness [8,9] for isotropic material. In what follows, the derivation of Fl .ugge’s equations
is recalled. Then in a second step, Fl .ugge’s equations are generalized for a piezoceramic material
including the electromechanical coupling and additional field variables. Different approximations
for the fulfillment of Maxwell’s equations are considered and compared.

2.1. The piezoelectric cylindrical shell

The stator of the motor described in Ref. [1] is a monolithic, piezoceramic shell which is covered
with a closed thin electrode on the inner surface and nine evenly divided electrodes on the outer
surface. This is also the shell considered in this paper. The geometry of the piezoceramic shell is
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given by the height of 10 mm; the radius to the mid-surface of 18 mm; and the thickness of 2 mm
(Fig. 1). The shell will be considered ideally rotationally symmetric with respect to mass
distribution and stiffness, and the electrodes will only be considered in the application of the
electric field. Each third metal strip is connected to form one electrode. So that this shell has three
sets of electrodes for generating a travelling wave in the piezoelectric shell.

2.2. Fl .ugge’s shell theory

In the derivation of Fl .ugge’s equations, the following assumptions for cylindrical shells are
made:

* All points that lie on a normal to a middle surface before deformation do the same after
deformation.

* Displacements are small compared to the shell thickness.
* The normal stresses in the thickness direction are negligible (planar state of stress).

In particular, the first assumption may not correspond to reality in the neighborhood of the shell
boundaries. However, this fact will not be considered here.

In the sequel, the indices x or 1 will denote the axial direction, while j or 2 correspond to the
circumferential and r or 3 to the radial direction. The cylindrical co-ordinates will be denoted
correspondingly by x;j and r and the displacements in these three directions by u; v and w
respectively. The radius of the mid-surface of the circular cylinder is denoted by a; the thickness of
the shell by s: The co-ordinate z denotes the distance of a point to the mid-surface so that
r ¼ z þ a; or z ¼ r � a:

In order to avoid confusion with the notation for derivatives, they are denoted by commas
followed by indices, as is frequently done in the literature. In the case of functions of one variable
only, we will however use the superscript ‘‘0’’. In addition, the non-dimensional axial co-ordinate
W ¼ x=a is introduced, in order to simplify the equations. External loads acting on the shell are
denoted by px; pj; pr:

The stress resultants acting on an infinitely small shell element are shown in Fig. 2. The
following six momentum and moment of momentum conditions can be formulated for
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this element:

Nx;W þ Njx;j þ apx ¼ ma .u; ð1Þ

Nj;j þ Nxj;W � Qj þ apj ¼ ma.v; ð2Þ

�Qj;j � Qx;W � Nj þ apr ¼ ma .w; ð3Þ

Mj;j þ Mxj;W � aQj ¼ 0; ð4Þ

Mx;W þ Mjx;j � aQx ¼ 0; ð5Þ

aNxj � aNjx þ Mjx ¼ 0: ð6Þ

Here, the effects of rotatory inertia was neglected and the abbreviation m ¼ rs was used for the
mass per unit area. The distributed forces and moments are related to the stresses via

Nj ¼
Z s=2

� s=2
sj dz; ð7Þ

Nx ¼
Z s=2

� s=2
sx 1þ

z

a

� �
dz; ð8Þ

Njx ¼
Z s=2

� s=2
txj dz; ð9Þ

Nxj ¼
Z s=2

� s=2
txj 1þ

z

a

� �
dz; ð10Þ

Mj ¼ �
Z s=2

� s=2
sj z dz; ð11Þ
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Mx ¼ �
Z s=2

� s=2
sx 1þ

z

a

� �
z dz; ð12Þ

Mjx ¼ �
Z s=2

� s=2
txj z dz; ð13Þ

Mxj ¼ �
Z s=2

� s=2
txj 1þ

z

a

� �
z dz ð14Þ

(see Ref. [8]). The stresses appearing on the right-hand side of Eqs. (7)–(14) are related to the
strains through

sj ¼
E

ð1� n2Þ
ðej þ nexÞ; ð15Þ

sx ¼
E

ð1� n2Þ
ðex þ nejÞ; ð16Þ

txj ¼
E

2ð1þ nÞ
gxj ð17Þ

in the case of elastic isotropic materials (planar state of stress). The strains on the other hand can
be expressed through the displacements of the points on the mid-surface, using the kinematics
according to Fl .ugge’s assumptions:

ex ¼
u;W

a
� z

w;WW

a2
; ð18Þ

ej ¼
v;j

a
�

z

a

w;jj

ða þ zÞ
þ

w

ða þ zÞ
; ð19Þ

gxj ¼
u;j

ða þ zÞ
þ
ða þ zÞ

a2
v;W �

w;Wj

a

z

a
þ

z

ða þ zÞ

� �
: ð20Þ

Details can be found in Ref. [8]. The kinematical relations (18)–(20) together with the stress–strain
relations (15)–(17) can now be used in Eqs. (7)–(14) to express the distributed forces and moments
linearly through the mid-plane displacements and its derivatives. Next, these are substituted into
Eqs. (1)–(6). Note that here the shear forces Qx; Qj can be eliminated using Eqs. (4), (5) so that
only Eqs. (1)–(3), and (6) remain.

However, Eq. (6) is automatically fulfilled due to the symmetry of the stress tensor. The
integrations in Eqs. (7)–(14) lead to logarithmic terms like lnð2a � sÞ � lnð2a þ sÞ: Since the whole
shell theory is evaluated linearly, the logarithmic terms are replaced by the first two members of a
Taylor series, so that lnð2a � sÞ � lnð2a þ sÞ becomes ð�s=a � s3=12a3Þ: Substituting Eqs. (7)–(14)
into the remaining equilibrium conditions finally leads to Fl .ugge’s differential equations for the
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dynamics of circular cylindrical shells:

D

a
u;WW þ

ð1� nÞ
2

u;jj þ
ð1þ nÞ

2
v;Wj þ nwW

�

þ
s2

12a2

ð1� nÞ
2

u;jj � w;WWW þ
ð1� nÞ

2
w;Wjj

� ��
¼ ma .u � apx; ð21Þ

D

a

ð1þ nÞ
2

u;Wj þ u;jj þ
ð1þ nÞ

2
v;WW þ w;j

�

þ
s2

12a2

3

2
ð1� nÞv;WW �

ð3� nÞ
2

w;WWj

� ��
¼ ma.v � apj; ð22Þ

D

a
�nu;W � v;j � w �

s2

12a2

ð1� nÞ
2

u;Wjj � u;WWW �
ð3� nÞ

2
v;WWj

��

þ w;WWWW þ 2w;WWjj þ w;jjjj þ 2w;jj þ w

��
¼ ma .w � apr; ð23Þ

where the abbreviation

D ¼
Es

ð1� n2Þ
ð24Þ

was used for the bending stiffness.

2.3. Piezoelectric shells

For piezoelectric shells the ‘‘dynamic equilibrium conditions’’ (1)–(6) remain unchanged. The
same holds for the expressions of the stress resultants given in Eqs. (7)–(14). The change occurs in
the constitutive relations, which in Eqs. (15)–(17) were given for an elastic material (non-
piezoelectric) for the case of a planar state of stress.

The linear constitutive equations of a linear piezoelectric material in the general case of an
arbitrary state of stress are given by Ikeda in [10] as

T ¼ cES� eTE; ð25Þ

D ¼ eSþ eSE; ð26Þ

where T is a ð6� 1Þ column matrix representing the mechanical stresses, S a ð6� 1Þ strain column
matrix, E a ð3� 1Þ electric field vector and D a ð3� 1Þ vector of electric displacements. The
elements of the matrices cE ð6� 6Þ; eT ð6� 3Þ and eS ð3� 3Þ are material constants. The
constitutive equations can be formulated with different sets of independent mechanical and
electrical variables. The choice depends on the relative merits regarding the formulation of the
boundary conditions [11].

In what follows, the electric boundary conditions will be formulated by locally prescribing the
electric potential. This corresponds to electrically forced vibrations by applied voltages, or to free
vibrations in the case of short-circuited electrodes. The resonance peaks in the electrical
admittance functions then correspond to the eigenfrequencies of the shell with short-circuited
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electrodes. Open electrodes, on the other hand, lead to (integral) boundary conditions formulated
in terms of the electrical charges. The corresponding eigenfrequencies are associated with the
antiresonances in the admittances.

Using the same assumptions as in Section 2.2, the relations between the planar stresses and
strains

sj ¼
ðc12c33 � c213Þ

c33
ex þ

ðc11c33 � c213Þ
c33

ej

þ
d13

c33
ð2c213 � ðc11 þ c12Þc33ÞE3; ð27Þ

sj ¼
ðc11c33 � c213Þ

c33
ex þ

ðc12c33 � c213Þ
c33

ej

þ
d13

c33
ð2c213 � ðc11 þ c12Þc33ÞE3 ð28Þ

and

txj ¼
ðc11 � c12Þ

2
gxj ð29Þ

are obtained from Eq. (25) for a piezoelectric material of type PIC141 (see the appendix). It is
clear that the elastic anisotropy is not relevant here, since the piezoceramic shell is radially
polarized. The material constants ckl ; dij coincide with the parameters given by the manufacturers
in Cartesian co-ordinates.

As mentioned before, the kinematic relations (18)–(20) remain unchanged. In addition to the
constitutive relations one has to make use of Maxwell’s equations also which in the case of
electrostatics reduce to

rotE ¼ 0 ð30Þ

and

divD ¼ 0: ð31Þ

In Ref. [1], the validity of the assumption of these simplified relations examined in detail. The
irrotational nature of the electric field E is assured if one expresses E through an electric potential
function F: In the particular case of separability of the potential function this leads to

E ¼ �gradFðx;j; rÞ ¼ �grad½FxðxÞFjðjÞFrðrÞ	: ð32Þ

Separability will be assured for the shells considered in this paper, as discussed later. In cylindrical
co-ordinates Eq. (31) is written as

divD ¼
@Dx

@x
þ

1

r

@Dj

@j
þ

1

r

@ðrDrÞ
@r

: ð33Þ

Since, the polarization of the piezoelectric shell is assumed to be in the radial direction, only shear
deformations could lead to electrical displacements orthogonal to the radial direction. Since they
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are not considered in the kinematic relations, therefore, Eq. (33) simplifies to

divD ¼
1

r

@ðrDrÞ
@r

: ð34Þ

In addition, also the components of the electric field in the circumferential direction can be
disregarded and the potential is constant in the axial direction on the electrodes, so that the
electrical field has no axial component. Thus, the radial component of D can be obtained with
Eq. (26), which simplifies to

Dr ¼ e31S1 þ e31S2 þ e33S3 þ ES
33E3: ð35Þ

The expression for divD becomes

divD ¼
1

r

@

@r
ðrðe31S1 þ e31S2 þ e33S3 þ ES

33E3ÞÞ

¼
1

r

@

@r
ðrðe31ex þ e31ej þ e33er � ES

33F;rÞÞ: ð36Þ

Taking into account the relation

er ¼ �
c13

c33
ðex þ ejÞ � 2

c13

c33
d31 þ d33

� �
F;r; ð37Þ

which holds for planar stresses, leads to

divD ¼
1

r

@

@r
ðrððe31 � e33kcÞðex þ ejÞ � ð2kce33d31 þ e33d33 þ ES

33ÞF;rÞÞ ð38Þ

with kc ¼ c13=c33: Using the kinematic relations (19)–(21) yields

divD ¼
1

ar

@

@r
ðrðe31 � e33kcÞðu;W þ w;WW þ v;j þ w;jjÞÞ

�
1

a2r

@

@r
ðr2ðe31 � e33kcÞw;WWÞ þ

1

r

@

@r
ððe31 � e33kcÞðw;jj þ wÞÞ

�
1

r

@

@r
ðrð2kce33d31 þ e33d33 þ ES

33ÞF;rÞ: ð39Þ

Condition (31) results in the differential equation

1

ar
ðe31 � e33kcÞðu;W þ w;WW þ v;j þ w;jjÞ �

2

a2
ðe13 � e33kcÞw;WW þ

0

r

¼
2kce33d13 þ e33d33 þ ES

33

r
ðF;r þ rF;rrÞ ð40Þ

for the electric potential F: This is an inhomogeneous differential equation of the Euler type which
can be written in the form

ðF;r þ rF; rrÞ ¼ kF0 þ kF1r; ð41Þ

where the abbreviations

kF0 ¼
ðe31 � e33kcÞðu;W þ w;WW þ v;j þ w;jjÞ

að2kce33d31 þ e33d33 þ ES
33Þ

ð42Þ
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and

kF1 ¼ �
2ðe31 � e33kcÞw;WW

a2ð2kce33d31 þ e33d33 þ ES
33Þ

ð43Þ

were used. The terms kF0 and kF1 depend only on the variables x and j through the displacements
u; v and w: The general solution of the homogeneous differential equation is

Frh ¼ CR1 ln r þ CR2 ð44Þ

and a particular solution of the inhomogeneous equation is given by

Fp ¼
kF1

4
r2 þ kF0r; ð45Þ

so that the general solution of Eq. (41) is

Fðx;j; rÞ ¼FxFjFrh þ Fp

¼FxFjðCR1ln r þ CR2Þ þ
kF1

4
r2 þ kF0r: ð46Þ

The integration constants are determined from the boundary conditions Frða � s
2
Þ ¼ 0 and

Frða þ s
2
Þ ¼ Fboundaryðx;jÞ for the electric potential, so that the electric potential in the shell as

function of r is given by

Fðx;j; rÞ ¼
2r � 2a þ s

8
4kF0 þ kF1 a þ r �

s

2

� �� �

þ Fboundary � kF0s � kF1a
s

2

� � lnð2a � sÞ=2r

lnð2a � sÞ=ð2a þ sÞ
: ð47Þ

Here again, the logarithmic terms are replaced by the first two members of the Taylor series (see
Section 2.2).

Substituting Eq. (47) into Eq. (32), using, Eqs. (27)–(29) and Eqs. (1)–(6) finally leads to the
equations of motion of the piezoceramic shell in the operator form

M ½ .w	 þ K½w	 ¼ FðFboundaryÞ cosOt; ð48Þ

with

½w	 ¼ ½u; v;w	T; ð49Þ

M ¼ ðmikÞ; mik ¼ �madik ð50Þ

and

K ¼

k11 k12 k13

k21 k22 k23

k31 k32 k33

0
B@

1
CA: ð51Þ

The elements of the operator matrix K and the vector FðFboundaryÞ are presented in the appendix.
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3. Solution of the differential equations

The solution of Eq. (48) is 2p-periodic in the angle co-ordinate j: Since the model is linear,
superposition is permitted and any time and/or space periodic excitation can be developed in a
Fourier series. The system response of the time periodic excitation is obtained by superimposing
each component of the system response of the Fourier series. Solutions can be found in the form

u ¼ UelW cosðmjÞ sinðOtÞ; ð52Þ

v ¼ VelW sinðmjÞ sinðOtÞ; ð53Þ

w ¼ WelW cosðmjÞ sinðOtÞ: ð54Þ

For the complete solution, an orthogonal mode has also to be taken into account, which is phase
shifted by j ¼ p

2
; i.e.,

%u ¼ %UelW sinðmjÞ sinðOtÞ; ð55Þ

%v ¼ %VelW cosðmjÞ sinðOtÞ; ð56Þ

%w ¼ %WelW sinðmjÞ sinðOtÞ: ð57Þ

Since, Eqs. (55)–(57) do not add new information with respect to the eigenfrequencies and the
eigenmodes, they are not considered any longer. The general solution for the harmonically forced
case can be expressed by

u ¼
X

i

X
m

Uime
limW cosðmjÞ sinðOtÞ; ð58Þ

v ¼
X

i

X
m

Vime
limW sinðmjÞ sinðOtÞ; ð59Þ

w ¼
X

i

X
m

Wime
limW cosðmjÞ sinðOtÞ: ð60Þ

In order to solve for U ; V ; W ; Eqs. (52)–(54) are substituted into Eq. (48). Comparing the
coefficients of cos ðmjÞ sinðOtÞ and sinðmjÞ sinðOtÞ from both sides, one finally gets a set of
algebraic equations which can be written in the matrix form

Aðl;m;OÞ

U

V

W

0
B@

1
CA ¼ fðFboundaryÞ: ð61Þ

The general solution of the above algebraic equations contains the solution of the homogeneous
problem (denoted by Uh) and the particular solution (denoted by UpÞ: The homogeneous set of
equations of free vibration with short-circuited electrodes takes the form (for convenience the
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subscript h is temporarily omitted)

Aðl;m;oÞ

U

V

W

0
B@

1
CA ¼ 0: ð62Þ

The characteristic equation of the eigenvalue problem is obtained as

X8

i

X8

j

X6

k

aijkl
im jok ¼ 0: ð63Þ

Polynomial (63) represents the dispersion relation and is of the order of 8 in li and m j and of 6 in
ok; more precisely, it is of the order 4 in l2i and m2j and of 3 in o2k: In general m which can take
only integer values, gives the number of wavelengths of the travelling waves around the
circumference. For each pair of o and m; eight sets of solutions for li and their corresponding
vectors ðUi;Vi;WiÞ

T are obtained. The eigenfunction can be written by superimposing the above
solutions where the unknown coefficients are determined up to a constant factor by satisfying the
boundary conditions. For a free–free vibrating cylindrical shell, the boundary conditions at each
free end are obtained from vanishing normal forces ðNx;NxjÞ and equivalent shear forces
ðVx;VxjÞ:

Vx ¼ Qx �
1

a
Mxj;j; ð64Þ

Vxj ¼ Nxj þ
1

a
Mxj: ð65Þ

The boundary conditions then yield the algebraic matrix equation

MðliðoÞ;UiðoÞÞ1 ¼ 0: ð66Þ

The determinant of M; which is a function of o must vanish for the eigenfrequencies. The
corresponding eigenvector 1 contains the coefficients of Ui ¼ ðUi;Vi;WiÞ

T: Therewith, the
solution of the homogeneous problem is obtained. In the following, the particular solution of the
inhomogeneous problem will be derived.

For the particular solution the relation

Up ¼ A�1ðl;m;OÞfðFboundaryÞ ð67Þ

holds. Analogous to the free vibrations of the shell, the solutions of Eq. (61) are found applying
the frequency O of the excitation fðFÞ: The boundary conditions are formulated as

MðliðOÞ;UiðOÞÞ1 ¼ �Me �MðL;UpÞ; ð68Þ

where in the right-hand side, the vector Me comes directly from the electrical excitation and the
second vector MðL;UpÞ contains the particular solution. L is obtained by the relation

Fboundary ¼ #FeLW cos mj sinOt: ð69Þ

Since the electrical potential is independent of x; L turns out to be zero. The coefficients of the
eight sets of solutions of vector U are calculated with

1 ¼ �M�1ðliðOÞ;UiðOÞÞðMe þMðL;UpÞÞ; ð70Þ
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so that finally, the complete solution of the inhomogeneous problem is

U ¼ Up þ 1 Uh: ð71Þ

4. Electrical admittance

In a piezoelectric shell it is usually easier to measure the electrical impedance or admittance via
an impedance analyzer than the eigenmodes and eigenfrequencies via experimental modal
analyzers. Therefore, the admittance will be computed to verify the model.

To compute the electrical admittance Y of a system, the surface charge of the electrodes and the
potential are needed. Other than in the piezoelectric material where divD vanishes, in the
electrode divD ¼ RQ; where RQ is an expression for the density of free charges. With

I ¼ ’Q; Q ¼
Z Z Z

electrode

RQ dV ¼
Z Z Z

electrode

divD dV ð72Þ

and

#U ¼ #Fjz¼ s=2
z¼� s=2; ð73Þ

the electrical admittance can be written as

Y ¼
#I

#U

with #I; #U as the complex amplitudes of the harmonic current and voltage, respectively. This leads
to

Y ¼

R R R
electrode

div #’D dV

#Fboundary

: ð74Þ

Using Gauss’ law, the charge contained inside a control volume (see Fig. 3) is related to the
electrical displacement bounded by a surface and is expressed byZ Z Z

electrode

div #’D dV ¼
Z Z

electrode

#’D � n dA; ð75Þ

where n is the normal vector of the surface. In the limiting case, one surface in the piezo material
and another parallel surface in the electrode material are to be considered, only. Due to a very
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high conductivity of the electrode material, the electric field within the electrode is negligible.
Thus, the electric displacement in the electrode vanishes and plays no role in the surface integral
Eq. (54). Hence, the surface integral is to be evaluated only over the surface within the piezo
material.

The normal vector n has the radial component only. Thus, the term of the integral in Eq. (54)
simplifies to

#’D � n ¼
#’Dr for r ¼ a � s=2;

� #’Dr for r ¼ a þ s=2:

8<
: ð76Þ

For harmonically excited systems

#’D� iO #D ð77Þ

holds and therefore, the electrical admittance yields

Y ¼

iO
R R

electrode

#Dr dA

#Fboundary

: ð78Þ

5. Results

Numerical results obtained from the described piezo-shell model are compared to those from
experiments obtained in our lab. Displacements, admittances and eigenmodes are presented and
discussed.

5.1. Admittance

For the measurement of the admittances one set of electrodes of the piezoceramic ring is excited
by applying a harmonic voltage signal. Both other sets of electrodes are short-circuited with the
inner electrode. The advantage of having the electrodes short-circuited is that the boundary
conditions are potential boundary conditions which can be locally formulated. With open
electrodes, the boundary conditions would be charge boundary conditions which are only
amenable to an integral description.

Fig. 4 presents admittances calculated from the model and obtained from the experiment. The
electrical admittances were obtained using the Impedance/Gain-Phase Analyzer HP 4194A
together with the Measurement Unit HP 4194A. The frequencies 88 and 159 kHz; which were
calculated from the model, correspond to the first and second eigenfrequency of the piezoring and
are verified through the experimental results. Their deflection to the experimentally obtained
resonance frequencies is E4%: This is perfectly acceptable since the material constants are
specified by the manufacturer with an error margin of 5%. No attempt was made to match
computational results to experimental data by adjusting parameters. The measured admittances at
the points of resonance could not be verified by the model since quality factors for piezoceramics
given by manufacturers were very imprecise.
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5.2. Axial displacements

In order to assure a good approximation to the free–free boundary conditions at both ends of
the piezoelectric shell in the experiment, a clamp with soft rubber was built which holds the ring
by small axisymmetric outward radial forces on the inner surface. The clamp construction was
mounted on a rotating table to make all points accessible for measuring the displacements. The
velocity points on the surface of the shell were measured using the Laser Vibrometer, Polytec
OFV 2802 and OFV 508.

The piezoshell was excited by one set of electrodes while the two remaining sets were short-
circuited for reasons explained in Section 5.1. Measurements of the surface velocities in axial and
radial direction were taken at one location of the shell. Finishing the measurements at one
location, the piezoceramic was turned by a defined angle of 5210� and recording of the
measurements of displacements was continued. One set of measured data is then a characteristic
diagram of the transfer function of excitation voltage to surface velocities. In Fig. 5 axial
displacements over the circumference of the shell from both experiment and model are shown for
the first eigenfrequency of fE89 kHz:

For the axial displacement at the first eigenfrequency, the computation stands in good
agreement to what was measured. The calculation is based on the material constants and
geometric parameters given in the appendix.

5.3. Eigenmodes of the piezo ceramic shell

In this section, the computed vibration modes are visualized. In Figs. 6 and 7, the vibration
modes of the first two eigenfrequencies are shown. The displacements are scaled to aid
visualization. The axial displacements at the first eigenfrequency of approximately 89 kHz (Fig. 6)
are relatively small compared to those of the second eigenfrequency (Fig. 7). In contrast, the
radial part of displacements at the first eigenfrequency are higher than those at the second
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frequency. This may be important for the piezoceramic motor using the shell as a stator. The
radial motion is perpendicular to the generalized elliptical motion and hinders the rotatory
motion of the rotor. So, for a motor application the second eigenmode is recommended.
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Fig. 6. First eigenmode at fE89 kHz:
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6. Conclusions

In this paper Fl .ugge’s equations for cylindrical shells were generalized to the case of
piezoelectric shells polarized in the radial direction. Such shells are used e.g., as stators in some
piezoelectric ultrasonic travelling wave motors and it is therefore important to study their free and
forced vibrations. The constitutive relations used in the theory of elastic shells were replaced by
those of a linear piezoelectric material. Therefore, additional field variables were introduced.
Together with Fl .ugge’s thin shell assumptions and with the piezoceramic constitutive equations
this resulted in the new equations of motion of a thin piezoceramic shell. Our shell equations differ
from those known from the literature, in that, we do not assume the electric field as constant over
the thickness.

For the case of a set of electrodes in the form of axial strips placed at equal angular differences
around the circumference and excited by a voltage, the equations of motion were solved using
Fourier techniques. Electrical admittances and the resonance frequencies were computed as well.

Eigenmodes and eigenfrequencies were obtained and compared to experimental values. The
experiments were carried out in the department’s laboratory using laser vibrometers and
impedance analyzers.

The proposed model of the shell stands in good agreement with the experiment and can be used
in modelling a larger integrated system, like ultrasonic motor, of which it is an important member.

This is an alternative to the use of 3-D FEM calculations for shells and gives a useful
engineering tool for a number of problems involving piezoelectric actuators. It offers also a basis
for the formulation of a new type of finite element with non-constant electric field. Such new
elements may be useful for 2-D FE calculations of piezoelectric, monolythic structure and
piezoelectric shells.
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Appendix

Material matrices of the piezoceramic type PIC141

cE ¼

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

0
BBBBBBBBB@

1
CCCCCCCCCA

with c66 ¼ 1
2
ðc11 � c12Þ;
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d ¼

0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

0
B@

1
CA;

e ¼ dcE ;

eS ¼

E11 0 0

0 E11 0

0 0 E33

0
B@

1
CA:

Material constants of the piezoceramic type PIC141 and geometric parameters of the shell:

e11 1.328� 10�8 A2 s4 kg�1 m�3

e33 1.151� 10�8 A2 s4 kg�1 m�3

c11 1.077� 1011 kg m�1 s�2

c33 1.047� 1011 kg m�1 s�2

c12 4.664� 1010 kg m�1 s�2

c13 4.630� 1010 kg m�1 s�2

d31 �1.15� 10�10 A s3 kg�1 m�1

d33 3.30� 10�10 A s3 kg�1 m�1

d15 4.75� 10�10 A s3 kg�1 m�1

e31 �2.47 A s m�2

e33 23.90 A s m�2

Axial height h 10 mm
Mid-radius a 18 mm
Shell thickness s 2 mm

Elements of operator matrix K

k11 ¼ k1
s

2a
�
ð12a2 þ s2Þ

12a2

@2

@j2
� 2

@2

@W2

� �
þ k2

s

2a

ð12a2 þ s2Þ
12a2

@2

@j2
� kp

s

a

s2

ð12a2 þ s2Þ
@2

@W2
;

k21 ¼ �k2
s

2a

@2

@j@W
� k1

s

2a

@2

@j@W
� kp

s3

ð12a3 þ s2aÞ
@2

@j@W
;

k31 ¼ k1
s3

24a3

@3

@W@j2
� 2

@3

@W3

� �
þ k2

s

2a
2
@

@W
�

s2

12a2

@3

@W@j2

� �

� kp

s3

a

1

ð12a2 þ s2Þ
@3

@W@j2
þ

1

12a2

@3

@W3

� �
;
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k12 ¼ k1
s

2a

@2

@W@j
� k2

s

2a

@2

@W@j
� kp

s3

ð12a3 þ s2aÞ
@2

@W@j
;

k22 ¼ �k1
s

2a
2

@2

@j2
þ

ð4a2 þ s2Þ
4a2

@

@W2

� �
þ k2

ð4sa2 þ s2Þ
8a3

@2

@W2
� kp

s3

ð12a3 þ s2aÞ
@2

@j2
;

k32 ¼ �k1
s3

sa3

@3

@W2@j
þ k1

s

a

@

@j
þ k2

s3

24a3

@3

@W2@j
� kp

s3

a

1

ð12a2 þ s2Þ
@3

@j3
þ

1

12a2

@3

@W3

� �
;

k13 ¼ k1
s3

24a3
�

@3

@W@j2

� �
þ k2 �

s

a

@

@W
þ

s3

24a3

@3

@W@j2

� �
þ kp

s3

a
�

1

ð12a2 þ s2Þ
@3

@W2@j
þ

1

12a2

@3

@W3

� �
;

k23 ¼ k1
s

2a
�2

@

@j
þ

s2

4a2

@3

@W2@j

� �
� k2

s3

24a3

@3

@W2@j
þ kp

s3

a
�

1

ð12a3 þ s2Þ
@3

@j3
þ

1

12a2

@3

@W2@j

� �
;

k33 ¼ k1
s2

24a3
4

@2

@j2
þ 2

@4

@j4
þ 4

@4

@W2@j2
þ 2

@4

@W4
þ 2

� �
þ k2

s

a

þ kp
s3

a
�

1

ð12a2 þ s2Þ
@4

@j4
þ

1

12a2

@4

@W4

� �
:

Vector F:

F ¼

12a2

ð12a2 þ s2Þ
kd

@

@W
12a2

ð12a2 þ s2Þ
kd

@

@j

� 1þ
s2

ð12a2 þ s2Þ
@2

@j2

� �

0
BBBBBBB@

1
CCCCCCCA
Fboundary:

Constants:

according to Fl .ugge : defined in this paper :

k1 ¼ �
D

s
¼

E

ðn2 � 1Þ
; k1 ¼

c213
c33

� c11;

k2 ¼ �n
D

s
¼

nE
ðn2 � 1Þ

; k2 ¼
c213
c33

� c12;

kd ¼ 0; kd ¼ d13ðk1 þ k2Þ;

kp ¼ 0: kp ¼ �
k2

d

½ð2c13d13 þ c33d33Þ
2 þ c33ES

33	
:

For non-piezoelectric material substituting d ¼ 0 and modifying the stiffness matrix by taking
care of the simplification for isotropic material, one gets back Fl .ugge equations of motion.
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